
White Paper

Creating a modern CICS Web Application

Matter of Fact Software

Stephen Mitchell

2020

enquiries@matteroffactsoftware.com

www.matteroffactsoftware.com

1

mailto:enquiries@matteroffactsoftware.com

Summary

Web interfacing with CICS is a topic that has fascinated some of us
for many years. IBM made doing so possible with the introduction
of the CICS WEB API extensions along with giving it native ability to
communicate across TCPIP directly via TCPIPService and URI CICS
Resource definitions.

The addition of these capabilities is a good thing, though IBM
themselves do not appear to promote their usage. Perhaps this is
because they are somewhat conflicted given they have an interest
in many other technology sectors and don’t wish to impact sales
and marketing efforts elsewhere within their technology portfolio.
Nevertheless, businesses that already have CICS at their disposal
would be wise to seek ways to exploit these capabilities to their
own advantage.

At this point it should be noted that gaining the business benefits of
these features of CICS requires mounting a learning curve and
investing time and effort in doing so. You will need to have
motivated systems programmers and developers to climb that
learning curve and all the while, there will be doubt and scepticism
within your technology departments that anything worthwhile will
come of such an investment of resources. However, in my opinion,
this is well worthwhile.

Learning how to exploit these capabilities of CICS will germinate
fresh ideas amongst your technical staff about how they can
approach the resolution of technical challenges faced by your
business. However, unless great care is taken at the outset, you will
find yourself reinventing the wheel over and over again to bring
solutions to fruition. This is because there are a number of different
factors that have to be handled in order to build, manage and
operate any and all CICS Web applications.

Matter of Fact Software, was founded to exploit these CICS Web
interfacing capabilities by producing solutions within the DevOps
arena. Our two products sit firmly in this arena:
2

PlexSpy, offering unique insights into named business application
status allowing support staff to identify possible causes of
operational issues faster than ever and usable with little or no
mainframe expertise.

CICS Content Delivery Server (CICS CDS) was conceived whilst
we were considering how to evolve PlexSpy. It came to life
originally as CICS JS/Server but it evolved to its current form in
which it provides capabilities to make it easy to create, manage and
serve novel CICS Web applications.

This White Paper examines how it is now possible to approach the
creation of a new CICS Web Application using CICS Content
Delivery Server which, essentially, does much of the heavy lifting
for you.

The Challenge

Make the IBM CICS Sample application, FILEA, available via a new
Web Application.

Background

The FILEA sample application has been present in CICS for many
years. It is a 3270 green screen driven application that accesses
VSAM data housed with the FILEA file. This file can be defined and
loaded with data by running a job provided by IBM in the SDFHINST
dataset.

SDFHSAMP(DFH$FAIN) houses sequential records that are loaded
into the file as part of the job held in SDFHINST(DFHDEFDS)

The CICS Transactions, programs and Mapsets required to run the
original application are defined within CICS CSD
Group(DFH$AFLA). The FILEA file definition along with a couple of
TDQueues are to be found in CSD Group(DFH$FILA). Adapt these
definitions for your site and install them in a CICS region then use

3

the AMNU transaction in a cleared CICS 3270 session to start the
application Menu.

It should appear as follows:

The input fields allow the file access transactions: AINQ; ABRW;
AADD & AUPD can be used and, if required, a record Key number
provided.

Entering ABRW in the transaction filed returns the following:

4

As can be seen, only four records at a time can be displayed and
the user must use ‘F’ or ‘B’ for page forwards and backwards
through the file records.

Using AINQ and a valid record Key value will return a display of the
record as follows:

Using AUPD will bring up a simpler display but will allow the user
to overtype the data in the fields and then save it to the FILEA file.

Using AADD and providing a new (unused) record key will result in
a display as follows:

5

Values can be added to the fields and hitting ENTER key should
result in the new record being saved to the file.

As an application, the original sample is quite simplistic and not
terribly user friendly but it does act as a sample of what can be
done with CICS as it was all those years ago.

We decided it needed an update.

Our Approach

CICS CDS does much of the work needed to serve CICS Web
Applications, leaving the developer free to focus attention on the
actual needs of the application. Of course, we wanted to take
advantage of those capabilities to achieve our aims and it offers a
number of ways of tackling the task.

Following a simple installation process, we implemented and
configured CICS CDS to run in one of our development & test CICS
regions. From that point we had a platform to develop our new
application, taking advantage of the powerful features provided by
the software.

6

We chose to build the front end using css grid elements to provide a
consistent and flexible page layout and to use an AJAX call to a
CICS program from within JavaScript to fetch the data from FILEA.
Other JavaScript elements were written to construct the data
displayed and to enable the various record management processes
(Update / Add / Browse / Delete / Read).

Given that the FILEA normally only has a small number of records
in it, we decided to pre-load all of the records on file into the
browser page as the application starts. These are displayed a
selectable list in the left hand side panel of the html page.

Obviously we needed a new program that can respond to Ajax calls
from the browser and this we called SAM0FILA. We chose to write
it in Cobol. The program was written to interact with CICS CDS,
accepting a Channel/Container which references the web response
(document) being constructed by the application. The program
uses CICS WEB READ FORMFIELD commands to retrieve action
pairs sent to it from the web Browser.

7

The Back-End - CICS Cobol Program

SAM0FILA has been supplied in both source and load module form.
It can be called via an AJAX call from the front-end web application.

The program has been written to function as a CICS CDS program
and storage areas are included in its STORAGE SECTION to fulfil
this requirement. A COBOL COPYBOOK, MF3LNKAG, is included in
the WORKING-STORAGE SECTION.

In its PROCEDURE DIVISION, the program looks for a CHANNEL.

An EXEC CICS ASSIGN CHANNEL command must return a value:
MF3-CHANNEL to qualify. If this is found, it then then issues:

EXEC CICS GET CONTAINER
 CONTAINER ('MF3-DTOKEN ')
 CHANNEL ('MF3-CHANNEL ')
 INTO ('................................')
 FLENGTH (32)

The 32 byte INTO area contains two sixteen byte document tokens
that have been created by the CICD CDS framework. The first of
these is the document token for the web document being built and
the second containing symbols if these have been used.

These can be used if the program needs to insert content into the
web document that will be returned to the caller.

After initial processing, the program will interrogate the web form
data that should have been sent to it. It passes through a section of
code that retrieves the various items of form field data that it
expects and IT then does what has been requested of it in those
form fields.

The first of these form fields , “call” is the function requested which
can only be one of the following:

8

“browse”, “read”, “add”, “update” or “delete”.

The program responds to a browse request by browsing all records
in the FILEA file and building a JSON data response containing all of
that data.

Similarly, it responds to a read request by reading a specific record
using the record key supplied to it in the form field data. The record
field values are returned to the caller using JSON data which is
written into the web document.

add a record requires form field data for every field in the record to
be present in the supplied form field data. The new record is
constructed from this data and written to FILEA. A confirmation is
returned to the caller using JSON data.

delete requires the record key to be deleted to be present in the
form field data passed to the program. The key is used to read the
record and it is then it is deleted. A confirmation is returned to the
caller via JSON data.

An update request will overwrite an existing record with the values
provided in the input form fields. This requires requires the record
key to be provided along with all record field values. A confirmation
is returned to the caller via JSON data following a successful rewrite
command.

In this case, the SAM0FILA program does not issue a CICS WEB
SEND command, instead it simply returns to its caller (a CICS CDS
framework program) which will issue the CICS WEB SEND on behalf
of the application.

9

The Front-End

We wanted to serve every part of our application from CICS on
mainframe z/OS using CICS CDS.

Firstly, we had to chose a CICS CDS Repository to house the
application. Each repository is a VSAM file that has been defined
and initialised and then the instance of CICS CDS to be used has a
configuration parameter added to enable its usage. We could have
defined a new file at this point but decided to use the SAM file as it
was already in place. We could chose to move or copy the
application artefacts to another file later if required, in any case.

Next, we needed to decide a web path for our application. We
decided to use the following knowing that we could make that
unique:

/sam/application/filea/

So, assuming the application will be driven from a file called
filea.html, our full application URL will be:

/sam/application/filea/filea.html

OK, we are ready to start using CICS CDS to define the application.

In the first instance, we need to start up the CICS CDS Editor.

This can be done by targeting the URL for the Editor in a Web
Browser as follows:

https://777.888.999.000:9566/CICS/MF3X/mf3/mf3contentu/
basicTextEntry.html

https is needed if your site has SSL enabled (recommended). The
url address can be the actual numerical address or a dns-name.
The port number must be the one defined to the CICS CDS instance
as a TCPIPService (MF3ADMIN). In our case, this is shown as 9566.

10

https://777.888.999.000:9566/CICS/MF3X/mf3/mf3contentu/basicTextEntry.html
https://777.888.999.000:9566/CICS/MF3X/mf3/mf3contentu/basicTextEntry.html

Once the Editor is loaded into the Web Browser, it appears as
shown below:

The chosen URL for the new application will need to be typed (or
pasted) into the URL field on the web-form. Clicking away from that
field will cause CICS CDS to verify the chosen URL at this point, so
you will be warned if it already exists on file - the URL being used is
part of the record key. As our url begins /sam/ , it is the MF3#SAM
file that forms the repository for the application.

It is advisable to create your new applications html, css and
JavaScript code using whatever off-host editor that you have at
your disposal.

The front end code can be developed and verified using static data
to reach a point at which you want to transfer it to the mainframe.

11

That was the approach we took and we ended up with a number of
artefacts as follows:

filea.html
/css/fileas.css
/js/filea.js
/images/favicon.png
/images/newadd1.png
/images/reload1.png
/images/clear1.png

/images/help1.png
/images/idelete1.png
/images/iupdate1.png
/images/iadduse1.png
/images/newLoad1.png
/json/filea-help.json

Each of these elements needed to be defined to CICS CDS in its
own right. The .html, .css and .js files are initially created using
the CICS CDS Editor.

The code created being entered into the Freeform Text area on the
Editor form along with its Url. Once saved, it can be executed either
by typing its URL into a web browser address bar or from the CICS
CDS Directory facility.

The Directory facility will display all or a subset of the records
present in a given CICS CDS Repository file.

To start the Directory Facility, enter the following into a Web
Browser Address bar:

https://777.888.999.000:9566/CICS/MF3L/mf3/directory/dir4.html

It appears as shown below:

12

This empty Directory function is primed to load from the SAM file as
can be seen in the ‘File’ input field setting. That dropdown selection
box can be adjusted by the user if necessary. Leaving the File
selection as ‘SAM’ and clicking the (Load) button will cause the
CICS server to be called and ALL records in the SAM file will be
displayed in the page below the form.

If the full record url is known, it can be typed or pasted into the
Root input field. Clicking (Load) will then return that record detail
alone. A partial url can also be entered in the Root field and that
would return all records matching that url prefix.

The green bar on the right hand side of the display can also be
useful here. Hovering the mouse pointer over it will cause it to pop-
out, displaying another input field along with all of the records
currently loaded in summary form (the url only).

Let’s assume we have only asked CICS CDS Directory function to
display the filea.html record. It would appear in the display as
shown overleaf:

13

14

The image files (.png) referenced within the html are created using
the CICS CDS Binary Upload feature.

To start the CICS CDS Binary Upload facility, use the following URL
in a Web Browser:

https://777.888.999.000:9566/CICS/mf3e/mf3/editor/advanced/uploadbinary.html

Once loaded, the web page should appear as follows:

15

https://777.888.999.000:9566/CICS/mf3e/mf3/editor/advanced/uploadbinary.html

A CICS CDS record has a usable payload of approximately 31,900
bytes. Many of the files required to build a web application will be
smaller than this but, should the need arise, records can be linked
together to form a whole. In this way, CICS CDS gets around the
32K limit that would otherwise apply. Additionally, it is possible to
take a larger off-host text file (html, css, js etc) and upload it using
the Binary Upload feature when it will be automatically split up into
what are termed Blocked records - these are records that will be
treated as a single entity when served but are in fact a set of linked
records on file.

Our css file is only 3.6K and fits easily in a single record.

The html file is only 7.5K.

The js file is 30.5K and still (just) fits into a single record.

The image png files are all quite small so they do not need to be
split up by CICS CDS.

The image file can be dragged and dropped onto the hot-spot on
the right at the top of the page or by clicking on that hot-spot, a file
open dialogue can be used to chose the image file required from
your file system. The Url field needs a valid value. We chose /sam/
application/filea/images/filename.png

Being image files, you probably want to allow the default http
cacheing header (Expiry) setting of 1 day but you can adjust that
should you wish to do so.

Once all of the files have been successfully created, it is possible to
point a web browser at the main html page and it will run. If the
Cobol program is successfully called, then the data from the FILEA
file will be loaded into the page as shown overleaf:

16

17

In the above, record number 005444 has been selected and the
data from that record populated into the central display area.

The slide bar allows the user to move up and down the list of
available records to find the one required.

In the top right hand side of the page is an area showing the details
of the CICS region in which the application is running along with
date and time information.

The top middle grid element shows a search field. Entering a partial
or full name here will result in the records in the left hand side
section being reduced to only show those that match the search
text entered. Search is done using JavaScript REGEX rules, so can
be complex.

Also in the top middle section are a number of clickable icons:

Add a new record will produce the following form within the
middle display panel:

18

The user can enter values into the fields as required. Pop-up hints
will appear for each field when hovering the pointer over any given
field and form field validation is done before the form can be
submitted to add the record to the FILEA file.

Reload Page will cause the file records to be refreshed from
the FILEA on the host and re-populate the left hand panel.

Clear Screen will empty the central panel of all text and data.

Help will display information into the central panel providing
a guide to using this application. It should be noted that the

19

 help Information returned is itself a call for JSON data that is
 loaded from the following URL:

/sam/application/filea/json/filea-help.json

Suitable help text is provided with the sample application within the
installed CICS CDS product. However, this can be changed using
the editor if required.

On the right hand side of the display is a checkbox ‘show
confidential information’. If this is checked then the Salary data
field from the records selected is shown. If it is not checked, then
the Salary data remains hidden.

The grid element at the bottom of the page gives an indication of
what the last action / usage was for the application.

Within the list of records in the left hand side list is an ‘X’ at the
right of the record number and Name. If the user clicks on that ‘X’
or if the line itself is left-clicked, then a pop-up menu appears
offering the following options:

Delete: Clicking this will result in a confirmation pop-up appearing
allowing the user to confirm a request to delete the record.

Update: Clicking this will open the record in the central panel with
the updatable fields available to change the data. A Save button
can be used there to re-write the record with any updates.

Add Using: Clicking this will open a form with all of the data for
the record highlighted. The user can adjust the fields as required
but must enter a new (unique) record key before clicking the Add
New button to save a new record.

Reload this Record from Host: Does exactly what you would
expect - it causes the application to re-read the chosen record from
the FILEA file and display it in the central panel.

20

At the end of the search field is a small icon that when clicked will
clear the search field data causing all of the records on file to be
displayed once more.

Using the search facility will result in information showing how
many records have been excluded by the using the search filter.

Searches are for all fields except salary.

The salary data is converted to ASCII on host and send encoded as
base64 to aid confidentially. CICS is capable to encode data in a
different CHARSET and send the data in-stream, assuming the
application/client is able to handle any specialised coding

The sample application does minimal checking.

The Cobol source is provided along with CICS CDS product. Users
of this code may wish to further enhance some capabilities of the
code.

21

Conclusion

Using CICS Content Delivery Server made the task of creating a
modern take on the FILEA sample application very simple.

Without CICS CDS, we would have needed to make all of the
application facets available via some other means (DOCUMENT
TEMPLATES, probably), have them uploaded to the mainframe,
defined, installed in CICS and then write CICS programs to access
these and to manage the creation, population and sending of the
web document. To do all of that is possible but to do so in a
bespoke manner would be a lot of work and require reinventing the
wheel every time you wanted to innovate a new web application.

We were able to design the front end elsewhere and then easily
move its elements into CICS CDS using its Editor and Binary Upload
functions.

It is necessary to either find or develop your own skills in writing
html, css and JavaScript itself to reproduce what we did with this
sample application. Alternatively, one could make use of one or
more of the in-built Open Source toolkits that come with CICS CDS.
Perhaps they might simplify the JavaScript required in the front-
end.

It would be simple to add other such Open Source offering to CICS
CDS if required.

In any case, it is clear that CICS CDS does what we set out to do
with it. Namely, to make creating novel CICS web applications very
easy. It should also be clear that other data mining processes could
be deployed within the CICS program called (DB2 etc).

What business challenges could you solve using it?

For more information or if you would like to explore the capabilities
of CICS CDS further, please contact Matter of Fact Software using
the following E-Mail address: enquiries@matteroffactsoftware.com

22

